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A Hierarchical Fast Solver for EFIE-MoM Analysis of
Multiscale Structures at Very Low Frequencies

M. A. Echeverri Bautista, M. A. Francavilla, F. Vipiana, and
G. Vecchi

Abstract—We present an EFIE fast solver that is stable down to very low
frequencies, for very dense meshes and multi-scale problems. The proposed
approach uses a split-potentials formulation in association to a hierarchic
pre-conditioner for the underlying low-rank fast factorization. Potential
splitting prevents the numerical cancellation problem that undermines the
effectiveness of the low-rank factorization, negatively impacting on the nec-
essary factorization tolerance. The fast method presented in this work can
be directly implemented into existing codes.

Index Terms—Fast solvers, hierarchical systems, integral equations,
method of moments (MoM), preconditioning.

I. INTRODUCTION

Due to its high accuracy the electricÞeld integral equation (EFIE),
discretized through the method of moments (MoM), is one of the most
used formulation for the analysis of complex structures. Its baseline im-
plementation has however a well-known “low frequency breakdown”
(e.g., [1], [2]).

The low frequency problem of standard Rao-Wilton-Glisson bases
[3] has been the subject of a signiÞcant research, and can be avoided
by quasi Helmholtz decompositions, such as Loop-Tree and Loop-Star
decompositions (e.g. [1], [4], [5]); however these bases have no pro-
tection against ill conditioning coming from dense meshes [6].

The dense mesh problem can be solved only if the spectrum
of the EFIE is properly modiÞed, as done by hierarchic precondi-
tioners [6]–[15]—that will be called multiresolution (MR) in the
following—or the Calderon preconditioners [16]; the multiplicative
nature of these two preconditioning approaches make them suitable to
be applied to any MoM code.

A somewhat less known fact is that at very low frequencies a “charge
cancellation” problem [17] arises, which limits the effectiveness of any
quasi-Helmholtz decompositions, and/or MR- and Calderon precondi-
tioners. This problem is rooted in theÞnite accuracy in the computation
of the solenoidal components of the decomposition, and translates into
a limit to its range of application. The charge cancellation problem is
further enhanced by the approximation intrinsic to the use of any fast
factorization; in what follows, we will concentrate on low-rank com-
pressive approximation, such as the Adaptive Cross Approximation
(ACA) [18], [19], that afford a simple, kernel-free, fast factorization
in the low frequency range.

The use of a MR preconditioner with a low-rank fast solver is re-
ported in [20], that considers the Matrix Decomposition Algorithm
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[21]. The reported results show the symptoms of the charge cancel-
lation problem, with performance worsening when structure sizes is
around (tens of MHz in the examined cases).
The cancellation problem is examined in depth in [17]. As re-

ported there, this limit could be solved compressing directly the
quasi-Helmholtz decomposition of interest (e.g., [22], [23]), but this
has some limitation in applicability to the underlying Helmholtz
decompositions, and/or preconditioners; in particular, it cannot be
applied to the hierarchic (MR) preconditioning strategy of present
interest. A rather different approach is proposed in [17], leading to a
new fast solver that effectively solves the low frequency problem.
An alternative solution relies on the explicit separation of the scalar

and vector potentials. Because of the potential splitting, an additional
memory storage is necessary: this way of proceeding was in fact fore-
shadowed in [17], but not pursued there because of this lesser efficiency
in storage. However, this approach has the advantage of being much
simpler and directly implementable into existing codes. To the best of
our knowledge, this route to low-frequency stabilization has never been
addressed1, and its performance analyzed, in the literature. This is in-
deed the motivation of the present study. We show that this simpler ap-
proach does indeed stabilize low rank fast factorizations in association
with standard Helmholtz decompositions; if used in association with a
MR preconditioner it allows fast convergence in dense mesh and multi-
scale problems. We investigate the additional costs of this scheme; the
computational complexity remains unchanged as expected; contrary to
intuitive expectations we show that, in the typical cases of practical
interest, memory requirement does not double, requiring instead an in-
crease of about 50%.
The communication is structured as follows: a brief presentation

of the EFIE formulation, the ACA algorithm and the low frequency
problem is assessed in Section II. The analysis and formulation of the
proposed method are introduced in Section III. Section IV shows the
numerical results assessing the feasibility of the proposed fast solver to
solve realistic problems in the low frequency regime. Finally Section V
contains the conclusions.

II. BACKGROUND

We consider a perfect electric conductor (PEC) body on which the
unknown current density is approximated as a linear combination of
basis functions

(1)

where corresponds to the current expansion coefficients and
to the Rao-Wilton-Glisson (RWG) basis functions [3]; applying the
Method of Moments and Galerkin testing the problem is transformed
into the linear system:

(2)

where

(3)

(4)

(5)

with and
equal to the definition domains of the functions and respectively,
and to the incident field.
In (2) we have explicitly denoted the contributions of the scalar

and vector potentials; we observe that in most numerical codes

1A part, of course, the remark in [17].

each matrix entry is actually computed via this two explicit contribu-
tions, that are then usually stored only as their sum.
In order to efficiently solve (2), a fast solver has to be used. The

Adaptive Cross Approximation (ACA) [18] is a fast compression al-
gorithm that takes advantage of the rank deficiency of the blocks of
the matrix representing far interacting groups of basis functions, and
has been successfully applied to solve problems in electromagnetics
(see, e.g., [19], [24]). A further memory reduction can be achieved by
means of a truncated singular value decomposition (SVD) applied after
the ACA, that has been demonstrated to preserve the ACA complexity
while lowering the memory requirements [25], [26]. The “ACA+SVD”
algorithm (referred to as ACA in the following for the sake of brevity)
is used to compress the rank deficient blocks of the MoM matrix; the
remaining part (that contains near groups interactions) is a sparse ma-
trix that is computed without approximations. Hence the final approx-
imated MoM matrix can be expressed as:

(6)

where is the sparse, near field matrix and collects all the
low rank factorizations of the matrix computed by the ACA. In the
following, all matrices involving a compressed version of the MoM
matrix, are identified by means of tildes.
As stated in the introduction, the multiresolution preconditioner is

able to efficiently solve the ill-conditioning due to low frequency and/or
dense meshes in multi-scale structures [6]. This is done by the gen-
eration of a hierarchical set of functions (multiresolution functions),
that describe both solenoidal and non-solenoidal spaces in a multilevel
fashion (details in [9]–[11]). The hierarchical set generation procedure,
yields to a change of basis matrix , whose rows collect the coeffi-
cients to express each MR function as a linear combination of RWG
basis functions,

(7)

where is the block of the matrix collecting the coefficients
regarding the non solenoidal functions , while is the block con-
taining the coefficients of the solenoidal functions . By definition, all
the solenoidal functions have zero divergence [7], [8], i.e.,
, where is the generic -th solenoidal function.
The regularization of the spectrum is obtained applying the ma-

trix to the MoM matrix followed by a simple diagonal precondi-
tioning [7].

III. HIERARCHICAL FAST COMPRESSIVE SOLVER

In this work the MR preconditioner is applied to the compressed
MoM matrix (by means of the ACA), extending the MR precondi-
tioning properties to very low frequencies. The application of the
MR change of basis matrix to the ACA compressed matrix is
straightforward as:

(8)

Then the diagonal preconditioner can be estimated in linear com-
plexity using the near field matrix only [13]. Each diagonal element of

is equal to

(9)

and the preconditioned system becomes

(10)

where is the solution of (2).
It can be verified that the high convergence rate is strongly related to

an accurate cancellation of the scalar potential contribution due to the
solenoidal functions . However when using a fast compressive solver,
the cancellation is guaranteed up to a certain accuracy which depends
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on the fast solver approximation tolerance, indicated in the following
with ; this creates an undesired link between the conditioning in the
system (10) and the fast solver tolerance [17].
The incomplete cancellation problem can be detected when applying

the diagonal preconditioner . When using a fast method, is ex-
tracted as in (9); its elements scale as for the solenoidal part and as

for the non solenoidal part, where stands for the discretization
size. When tends to zero any small perturbation in the solenoidal
part (as produced by the wrong numerical cancellation of the scalar
potential contribution) is amplified, and so the values in are highly
dependent on the relative size of the near field matrix with re-
spect to the spatial support of the MR functions; this deteriorates the
effect the diagonal preconditioner. To overcome this dependency, the
MR-MoM matrix (8) can be expressed blockwise using (7):

(11)

where the blocks of the matrix can be defined as:

(12)

with and .
We can observe that the scalar potential contribution in (11), due to

the solenoidal basis functions, is identically zero; therefore this condi-
tion can be explicitly enforced during the construction of the precon-
ditioned system (10) if the two potentials are considered separately.
Firstly we use the ACA to compress the vector (3) and scalar (4) po-
tentials in a separated fashion, as usually the MoMmatrix elements are
computed, that is

(13)

We observe that potential splitting obviously involves an additional
memory storage. At a first glance, it would appear that memory occupa-
tion should double. However, when using ACA (or any other low-rank
approximation) the actual memory requirements depend on the actual
degrees of freedom of the (far) field. As already noticed in [17], the two
potentials must be compressed to the same accuracy. As the numerical
experiments in Section IV will show, the rank of the scalar and vector
potential matrices is different, and their ratio depends on . As a re-
sult, in the range of interest for potential splitting the memory overhead
ranges from about 50% to 70%. Then, when changing the basis of the
matrix to the MR basis, we explicitly force to zero the scalar potential
contribution due to solenoidal functions:

(14)

this will take out any incomplete cancellation problem.
In a similar way, the diagonal preconditioner is obtained from

the near field matrix, using separated potentials and forcing to zero
any scalar potential contribution to the solenoidal part. As done for the
MR-MoM matrix, can also be expressed in a block form as:

(15)

were and are the diagonal blocks according to the notation
in (11) and

(16)

where is the vector potential part of the near field matrix.

Fig. 1. Number of iterations vs. the mesh discretization size over ; test case:
1 m diameter PEC sphere.

The proposed procedure has the advantage of being simple and easily
adapted to any existent low rank fast solver, without increasing the
overall computational complexity. The proposed scheme is expected to
keep the iterations count low, while the solution (current density) error
depends on only, breaking effectively the link between compression
rate and matrix conditioning.

IV. NUMERICAL RESULTS

In this section different performed tests are described to evaluate
three main issues: the low frequency breakdown, the numerical com-
plexity of the proposed solver, and dense meshes. Then realistic mul-
tiscale structures are simulated to show the performance of the devel-
oped approach.
In the performed numerical tests, the biconjugate gradients stabi-

lized (BiCGStab) iterative solver is used, setting the relative tolerance
to 1e-4; the diagonal preconditioner is applied to all methods for a fair
comparison. In the developed code, the matrix assembly is parallelized,
while the iterative solver uses a single thread. All the simulations are
performed with an Intel Xeon X5647 (2.93 GHz), 8 cores, 64 bit work-
station with 96 GB of RAM.

A. Low Frequency Breakdown

The test case is a 1 m diameter PEC sphere discretized with 17 832
RWG basis functions, discretization size m, and the fre-
quency range from 3 to 300 MHz. In Fig. 1 the performance of the pro-
posed split-potentials fast solver (labelled as “This work”) is evaluated
in terms of the number of iterations required to reach the iterative solver
convergence and compared with an fast solver, where the
ACA is applied to the elements of without the potential splitting.
In order to provide a more complete comparison, for one ACA toler-
ance only, the case where the potentials are compressed separately, but
no MR preconditioner is applied, is also presented, and labelled with
“Split ACA.” Moreover a test using a Loop-Tree decomposition and
the split-potentials fast solver (labelled with “This work + LT”) is pre-
sented in order to further demonstrate the feasibility of the proposed
solver to work with different Helmholtz decomposition based precon-
ditioners. In all cases the diagonal preconditioner is estimated from the
near field matrix. As a reference, the system is also solved via the ACA
without applying theMR preconditioner and the potential splitting. The
maximum number of iterations is fixed to 20 000. It can be observed
that the number of iterations remains low and constant with respect to

and with the proposed approach (both for MR and LT precondi-
tioners), while with the approach the number of iterations
is very sensitive to both parameters and no convergence is reached for

3e-3. It is noted that, in the approach, the incom-
plete cancellation problem deteriorates the MR conditioning effect to
a point in which the system takes less iterations to be solved without
using the preconditioner (ACA). This is a side effect of the diagonal
preconditioner estimation in (9), where the near field matrix (6) can
not accurately describe the contributions of the solenoidal functions,
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Fig. 2. Error in the calculated current density versus the discretization size in
; test case: 1 m diameter PEC sphere.

Fig. 3. Memory complexity scaling versus Number of unknowns.

mainly in the last levels of the MR basis, whose definition domain is
extended on several triangular cells. It is worth to remark that as stated
in Section III, the accurate cancellation of the scalar potential contri-
bution to the solenoidal space is the cornerstone for the MR precon-
ditioner to work. Finally, as expected, the behaviour of the ACA and
split ACA are comparable.
In Fig. 2 the relative error in the evaluated current density is

calculated (in percentage) with respect to the reference density cur-
rent , evaluated with the direct inversion of the full MoM matrix
(where the MR preconditioner is applied):

(17)

The error in the solution is related to and when simply ACA or
are used. Instead, with the proposed scheme, the error re-

mains constant with respect to and depends only on , as expected.
The obtained constant relative error trend (for a fixed iterative solver
residue, 1e-4 in our case, and a fixed ) with respect to demon-
strates that the low frequency ill-conditioning is effectively cured by
the proposed approach.
This is further explored in the following. It is well known [27] that

solving a generic linear system , by means of an iterative
or direct solver, lead us to a solution , whose accuracy depends on
the conditioning number of the matrix :

(18)

where is the residual defined as , and stands
for the conditioning number of . Rearranging terms in (18) as

(19)

it is therefore clear that the relative error is bounded by the conditioning
number of the matrix; consequently the constant error shown in Fig. 2

Fig. 4. Fill-in time complexity scaling versus Number of unknowns.

Fig. 5. Matrix-vector product time complexity versus Number of unknowns.

confirms that the proposed solver is able to overcome the low frequency
breakdown.
Finally, for a further comparison, we analysed also the 1 m ra-

dius, PEC sphere, with constant discretization size of 0.065 m in
the 0.45–450 MHz band presented in [17]. We verified that both
approaches are able to ensure a stable and fast convergence at low
frequencies with analogous accuracy.

B. Numerical Complexity

In order to demonstrate the feasibility and performance of the pro-
posed stable fast solver, its complexity scalings are evaluated. The
same sphere of the previous section is used (1 m diameter, PEC), the
frequency is fixed at 3 MHz, and the number of unknowns (N) is in-
creased by increasing the mesh density (decreasing the parameter).
Four cases are tested (10 464, 39 696, 155 529, 642 936 unknowns) and
the ACA compression tolerance is fixed to 1e-3. The MR complexity
is both for generation time and number of non zero ele-
ments in matrix , as demonstrated in [6].
In Fig. 3 the memory complexity of the proposed approach is shown;

near field (NF) refers to the memory occupation of the sparse ma-
trix containing the near field interactions, while far field (FF) stands
for the compressed far field interactions by means of the ACA. The
overall complexity scaling is : hence it can be noted that
the proposed split potentials formulation does not affect the overall
storage complexity. In Fig. 4 the fill-in time complexity is reported. The
fill-in time complexity scaling also follows the trend of
the memory. Finally Fig. 5 shows the complexity of the matrix-vector
product time, still with scaling .

C. Dense Meshes

After the low frequency breakdown and the numerical complexity
have been tested, here we evaluate the dense mesh effect on the con-
vergence and on the accuracy of the obtained solution. The frequency
is fixed to 3 MHz, and the test case is the same sphere (PEC, 1 m di-
ameter) with the same discretizations as in Section IV.B. The radar
cross section (RCS) is computed and compared with the Mie series
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than in the rest of the structure ( spans from 3e-5 to 3e-7). The
total number of unknowns is 58 380, the monopole is fed at its base2
with a voltage gap of 1 V, the frequency is set to 10 kHz (the aircraft
is 4e-3 from nose to tail) and is set to 1e-3. The simulated cur-
rent density is presented in Fig. 8 and the simulation requirements are
summarized in Table II. In the case the memory used is 4
GB, as expected a lower value than with the split potentials compres-
sion approach; however no convergence is reached in the
case, instead the proposed method converges in 45 iterations only. The
convergences of the compared approaches are shown in Fig. 9. The no
convergence of the ACA+MR scheme is mainly due to the inaccuracy
in the evaluation of the solenoidal part of the diagonal preconditioner.
Finally the performance of the proposed fast solver is further demon-

strated by simulating a morphed version of the Evektor EV55 aircraft3.
All internal details have been kept in the model, including all passenger
seats and the cockpit. The simulation is performed at four frequencies
(5 MHz, 1 MHz, 100 kHz and 1 kHz). The structure is discretized with
171 763 RWG basis functions; a plane wave impinges the structure
from 45 below the aircraft with an oblique polarization. As proven
in previous test cases, the proposed approach is the only one, among
the considered approaches, converging to an accurate solution when

( spans from 1.7e-8 to 2.8e-7). As a consequence, only
the results of this approach are collected for the EV55 test case. The
simulation results are summarized in Table III; the current density at 1
kHz is presented in Fig. 10. The results in Table III further demonstrate
the advantage of the proposed fast solver in terms of number of itera-
tions, which remains practically constant going down in frequency.

V. CONCLUSION

We have discussed a formulation to extend EFIE fast solvers with
compressive low rank (e.g., ACA) factorization to handle low and
very low frequency, and multiscale problems. Its potential splitting
and the proposed multiplicative preconditioner allow direct reuse of
existing MoM codes. The presented fast solver is able to solve the low
frequency breakdown while keeping a complexity both
for memory and fill-in time, and a for the matrix vector
product time complexity.
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