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Abstract—The numerical simulation of complicated 

grounding structures at low frequency – from about a hundred 
Hertz to some MHz – is required in several cases, for instance for 

the modelling of direct and indirect effects of lightning on 
aircraft. The Partial Element Equivalent Circuit (PEEC) 
methodology allows the mitigation of the low frequency ill 

conditioning problems of the canonical Method of Moments, and 
also allows the excitation of the structure under analysis by 
direct injection of an external electrical current. This paper 

describes the use of a surface formulation of the PEEC 
methodology, including the use of an accelerated iterative solver 
to allow the analysis of large models.  (Abstract) 

Index Terms—Method of Moments, Partial Element 

Equivalen Circuit, Current Return Network, Lightning, 

Electromagnetic Compatibility. 

I.  INTRODUCTION 

Several situations require the analysis and the verification 

of grounding structures. As an example, this is the case of an 

aircraft, where a dedicated conductive electrical pathway, 

usually named Current Return Network or Almost 

Equipotential Electrical Network (ALEEN) has to be 

integrated for the return of direct and alternating currents, 

faults currents, lightning current, etc. In case of aircrafts made 

of composite materials the body cannot assure a low 

impedance path, and an accurate modelling and design of such 

grounding structures becomes very important. 

The numerical simulation of ALEEN structures is a very 

challenging problem. An ALEEN is a large and usually very 

complicated structure, and it includes small pieces and 

contacts; we are usually interested in very low frequency (from 

about a hundred Hertz to some MHz), where classical Method 

of Moments formulation may become inaccurate due to ill-

conditioning problems; capacitive and inductive mutual 

coupling, skin and proximity effects have to be accurately 

simulated in order to precisely estimate impedances and 

electromagnetic field generated near the structure. 

This paper describes the use of a surface formulation of the 

Partial Element Equivalent Circuit (PEEC) methodology for 

the numerical modelling of grounding structures in low 

frequency. The PEEC methodology enforces the Electric Field 

Integral Equation and uses separate basis functions for current 

and charge unknowns, allowing a mitigation of the ill 

conditioning problems of the canonical Method on Moments. 

The continuity equation is explicitly included in the linear 

system to be solved. This gives the possibility of excite the 

structure by injecting an electric current in a part of the 

structure under analysis, and collecting the same current in 

another part of it, without the necessity to include any other 

elements (for instance loops or wires). This is particularly 

useful in case of modelling lightning effects, or to estimate the 

impedance between different points of the structure. 

The paper is organized as follows. Section II summarizes 

the surface PEEC formulation, and Section III describes the 

use of the ACA acceleration technique with a preconditioner to 

allow the analysis of large models. Section IV reports some 

results. 

II. S-PEEC FORMULATION 

The PEEC method ([1], [2]) is an electric field integral 

equation (EFIE) based approach which can provide an 

equivalent circuit in terms of the capacitive and inductive 

interactions between the elemental currents and charges in the 

discretized structure. The degrees of freedom in the PEEC 

formulation are the electric currents and the charges or the 

coloumbian potentials, quantities that are appropriate for an 

equivalent circuit representation. 

Let us consider a conducting structure. At any point in a 

conductor, the EFIE in the frequency domain reads: 

   ( )  
 ( )

 
   

  

  
∫

 (  )    |    |

|    | 
      ( ) 

where  represents the electrical conductivity of conductors, 

 ( ) represents the volumetric current density,  ( ) is the 

electric scalar potential,   ( ) the incident electric tangential 

field radiated by external sources and        is the 

wavenumber. 

By exploiting the equivalence theorem, it is possible to 

write the EFIE on the external surface of conductors, involving 

the surface equivalent current and charges. In particular, by 

considering conducting structures (and neglecting the magnetic 

current contribution), we have 
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where    denotes all metallization surfaces, and    is the free 

space Green’s function.   
   ( )  is the effective surface 



impedance which relates the tangential components of the 

electric field vector on the conductor surface to the 

corresponding tangential component of the magnetic field 

vector 

   ( ) ̂    
   ( ) ̂   ( ) 

The surface impedance includes resistive losses, skin effect 

and internal inductance of the conductor. Its value of  can be 

calculated with analytical formulas in case of canonical 

geometries, or estimated by means of a 2D numerical 

modelling of the transverse section, by assuming a longitudinal 

current flow. 

In our implementation, the surface electric current density 

    is expanded on RWG basis functions [3]  
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and the surface electric charge   is expanded on basis 

functions uniform on triangles 
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By using (4), (5) and a Galerkin discretization scheme, (2) 

is translated into the following linear system of equations 
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In (6)   represents a connectivity (incidence) matrix 

relating the triangles – where charge unknowns are defined – 

to their sides – where current unknowns are defined. 

The surface current and charge density are related by the 

continuity equation. By applying the Galerking discretization 

scheme also to this equation we obtain the following linear 

system of equation 

             

where    indicates a vector containing the external currents 

injected into the elements of the structure. Equations (6) and 

(7) represent the linear system to be solved in the S-PEEC 

formulation. A similar linear system can be formulated also for 

DC analysis (ω = 0), by assuming a surface element as a 

reference and decreasing by one the number of charge 

unknowns. 

III. ITERATIVE SOLUTION 

As for all the other full wave integral equation 

formulations, the use of a direct method to solve the linear 

system of equations given by (6) and (7) can be 

computationally too much expensive, since their complexity 

scales as O(N
3
) in CPU time and as O(N

2
) in memory 

requirements, N being the number of unknowns. In the case of 

S_PEEC formulation N is given by the sum of the current and 

charge unknowns, and it is higher than the number of 

unknowns required by the classical Method of Moments 

(adopting only current unknowns). 

In order to allow the analysis of large models, an iterative 

solution method of the linear system of equation (GMRES, 

BiCGStab, etc.) can be adopted. An iterative solver requires 

the evaluation of the product between the linear system matrix 

and a vector, for each iterative step. In case of a full matrix 

with order N, such product has a computational complexity 

and a memory requirements of O(N
2
). In case of large models, 

this can lead to unfeasible complexity and memory 

requirements. An acceleration technique and a preconditoner 

can be used to evaluate the matrix-vector products in a 

computationally efficient way, and to reduce the number of 

iterations to solve the linear system, respectively. The adopted 

techniques are briefly summarized in the next subsections. 

A. ACA Acceleration Technique 

Considering the S-PEEC linear system (6)-(7), two dense 

submatrix-vector products are required:    ,   . All the other 

submatrix-vectors products involve diagonal or sparse 

matrices. The acceleration is then achieved when these two 

submatrix-vectors products are computed in an efficient, 

though accurate way, by means of an acceleration strategy. 

The same acceleration strategy allows the reduction of the 

dynamic memory required. 

In the frequency range of interest, the usual structures to be 

analyzed are not large with respect to the wavelength, and the 

Green’s function (the interaction kernel) is a smooth operator. 

For these reasons, the Adaptive Cross Approximation (ACA) 

allows representing the full sub-matrixes of the S-PEEC linear 

system in a very efficient way, with no particular behavior 

differences in the range of frequencies of interest. Other 

acceleration algorithms, like the Multilevel Fast Multipole 

Approach, should be adopted for high frequency band. 

The ACA algorithm ([4], [5]) is based on the fact that an 

impedance matrix of rank m×n related to two very well 

separated blocks of basis functions can be approximated by the 

product of two matrices of rank m×r and r×n, with r<min(m,n), 

respectively. Hence, we can store only (m+n)×r matrix 

elements instead of m×n. The main advantage is that the 

algorithm is purely algebraic; hence, its formulation and 

implementation are integral equation kernel (Green’s function) 

independent, also with respect to the frequency. It can be used, 

without an ongoing solution, in all the frequency range down 

to DC. 



Moreover, it has been demonstrated that the ACA 

algorithm results in O(Nlog2N) complexity, when applied to 

static and electrically small electromagnetic problems. 

B. NI Preconditioner 

In order to improve the convergence of the iterative 

methods, a dedicated preconditioner was introduced. The basic 

idea is to exploiting the low-rank nature of matrices P and Lp. 

In particular, the structure is hierarchically divided in blocks. 

Then, a sparse approximation of these matrixes ( ̂,   ̂) is 

evaluated, by considering only the interaction between basis 

functions in the same or in near blocks. The (very) sparse 

matrix 
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is built, and it approximated inverse is evaluated, by means of 

ILUT algorithm. This approximated LU factorization, called 

Near Interaction (NI)-Preconditioner, is used as preconditioner 

for the iterative solver. 

Even if the PEEC method is much more stable at low 

frequencies respect to the canonical EFIE Method of Moments, 

its solution matrix can still exhibits quite high condition 

numbers. Indeed, since charge and current order of magnitude 

can be significantly different, the coefficients describing the 

interactions are several orders of magnitude different, 

following a     rule. This may result in slow convergence of 

iterative solvers at low frequency. This limitation can be 

mitigated by an opportune scaling, as presented in [6]. 

IV. RESULTS 

This section reports some examples of analysis with the 

described formulation. Further results will be shown at the 

time of conference. The first structure is the hollow cylinder 

shown in Fig. 1, fed by a loop, a common solution used to 

excite a structure resembling a fuselage in case of lightning 

analysis. The cylinder consists of a 4 mm sheet of material 

with σ = 20000 S/m, length equal to 20 m, and diameter of 4 

m. The left and right caps of the cylinder and the loop are 

perfectly conducting. The two feeding terminals are located in 

the middle of the horizontal side of the loop. 

 

 

Fig. 1. Hollow cylinder with feeding loop. A port is placed at the middle of 
the loop. 

 

Fig. 2. Impedance of the structure of Fig. 1. 

Fig. 2 shows the impedance of the structure, including the 

feeding loop. The same structure was analyzed in absence of 

the feeding loop, by direct injection of the electric current on 

the caps. The resulting impedance is shown in Fig. 3, showing 

the influence of the feeding loop. The possibility of inject and 

collect an electric current can allow lightning analysis in 

situation more close to the real one. 

Fig. 4 shows two pictures of a mock-up realized and 

measured by Labinal Power System. Fig. 5 shown the 

impedance of a loop realized by connecting to the ground 

network a side of a wire installed on the mock-up, while Fig. 6 

shows the contribution on the loop impedance of the wire and 

of the ground network. Also in this case, this is possible by 

injecting an exciting current directly on the ground network 

terminals. 

 

 

Fig. 3. Impedance of the hollow cylinder of Fig. 1 in absence of the feeding 

loop. Electric current is injected and collected from the two sides. 

 

 

 

 

 



 

Fig. 4. Mock-up structure used in validation. 

 

 

Fig. 5. Comparison between measured and simulated impedance of loop 
obtained short-circuiting a wire in the mock-up. 

 

 

Fig. 6. Impedance of a wire and the relative the ground connection point on 
the mock-up. 
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